Search results for "PEROXISOMAL DISORDERS"

showing 4 items of 4 documents

Impact of 7-Ketocholesterol and Very Long Chain Fatty Acids on Oligodendrocyte Lipid Membrane Organization: Evaluation Via LAURDAN and FAMIS Spectral…

2011

International audience; In the context of multiple sclerosis and X-linked adrenoleukodystrophy, 7-ketocholesterol (7KC) and very long chain fatty acids (C24:0, C26:0) are supposed to induce side effects respectively on oligodendrocytes which are myelin (which is a lipoproteic complex) synthesizing cells. The effects of 7KC (25, 50 mu M), C24:0 and C26:0 (10, 20 mu M) on cell viability and lipid membrane organization were investigated on 158N murine oligodendrocytes. Concerning 7KC and fatty acids (at 20 mu M only):1) cell growth was strongly inhibited; 2) marked induction of cell death was revealed with propidium iodide (PI); 3) no apoptotic cells were found with C24:0 and C26:0 (absence of…

MaleMYELINlaw.inventionchemistry.chemical_compoundMice0302 clinical medicinelawFAMIS2-Naphthylamine[SDV.IDA]Life Sciences [q-bio]/Food engineeringEnzyme InhibitorsLipid bilayerKetocholesterols0303 health sciencesMicroscopy ConfocalOXYSTEROLSFatty AcidsMULTIPLE-SCLEROSISvery long chain fatty acidsCell biologyPEROXISOMAL DISORDERSAPOPTOSISOligodendrogliaX-LINKED ADRENOLEUKODYSTROPHYmedicine.anatomical_structureMembraneCHOLESTEROL OXIDESlipids (amino acids peptides and proteins)Laurdanalpha-CyclodextrinsHistologyContext (language use)BiologyMETABOLISMPathology and Forensic Medicine158N oligodendrocytes03 medical and health sciencesMembrane LipidsConfocal microscopymedicineAnimals[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringViability assayPropidium iodideLAURDAN7-ketocholesterol030304 developmental biologyFluorescent DyesCell MembraneCENTRAL-NERVOUS-SYSTEMCell BiologyOligodendrocytechemistryCELLSmono-photon confocal microscopy030217 neurology & neurosurgeryLaurates
researchProduct

The Inflammatory Response in Acyl-CoA Oxidase 1 Deficiency (Pseudoneonatal Adrenoleukodystrophy)

2012

Among several peroxisomal neurodegenerative disorders, the pseudoneonatal adrenoleukodystrophy (P-NALD) is characterized by the acyl-coenzyme A oxidase 1 (ACOX1) deficiency, which leads to the accumulation of very-long-chain fatty acids ( VLCFA) and inflammatory demyelination. However, the components of this inflammatory process in P-NALD remain elusive. In this study, we used transcriptomic profiling and PCR array analyses to explore inflammatory gene expression in patient fibroblasts. Our results show the activation of IL-1 inflammatory pathway accompanied by the increased secretion of two IL-1 target genes, IL-6 and IL-8 cytokines. Human fibroblasts exposed to very-long-chain fatty acids…

MESH: Inflammationperoxisomal disordersMESH: Osteopontinmedicine.medical_treatmentMESH : ImmunohistochemistryMESH : Transcriptomechemokine receptorsVoeding Metabolisme en Genomica0302 clinical medicineEndocrinologyMESH: Reverse Transcriptase Polymerase Chain ReactionAcyl-CoA oxidasemultiple-sclerosis lesionsMESH : OsteopontinMESH : Fatty AcidsCells CulturedOligonucleotide Array Sequence Analysis[SDV.MHEP.EM] Life Sciences [q-bio]/Human health and pathology/Endocrinology and metabolism0303 health sciencesOxidase testMESH : Gene Expression RegulationReverse Transcriptase Polymerase Chain ReactionFatty AcidsMESH: Acyl-CoA OxidaseMESH : Reverse Transcriptase Polymerase Chain ReactionPeroxisome[SDV.MHEP.EM]Life Sciences [q-bio]/Human health and pathology/Endocrinology and metabolism[ SDV.MHEP.EM ] Life Sciences [q-bio]/Human health and pathology/Endocrinology and metabolismImmunohistochemistryMESH: Gene Expression RegulationMetabolism and Genomics3. Good healthMESH: Fatty AcidsMESH : Oligonucleotide Array Sequence AnalysisCytokineMetabolisme en GenomicaACOX1AdrenoleukodystrophyNutrition Metabolism and GenomicsMESH : Acyl-CoA Oxidasemedicine.symptomInflammation MediatorsMESH: Cells Culturedmedicine.medical_specialtyMESH : Interleukin-8MESH : Interleukin-6MESH: Inflammation MediatorsInflammationBiologyin-vitroMESH : Interleukin-1MESH : Inflammation Mediators03 medical and health sciencesVoedingInternal medicinePeroxisomal disordernf-kappa-bMESH : Cells CulturedMESH : Fibroblastsmedicine[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyHumans[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biologygene[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyNutrition030304 developmental biologyVLAGInflammationMESH: HumansMESH : InflammationInterleukin-6MESH: TranscriptomeInterleukin-8MESH : HumansMESH: Interleukin-1MESH: ImmunohistochemistryFibroblastsmedicine.diseaseMESH: Interleukin-6MESH: Interleukin-8EndocrinologyGene Expression RegulationMESH: FibroblastsMESH: Oligonucleotide Array Sequence AnalysiscellsBrief ReportsOsteopontinmicroarray analysisAcyl-CoA OxidaseTranscriptomeinterleukin-1030217 neurology & neurosurgeryx-linked adrenoleukodystrophyInterleukin-1
researchProduct

Targeted disruption of the peroxisomal thiolase B gene in mouse: a new model to study disorders related to peroxisomal lipid metabolism

2004

The peroxisomal beta-oxidation system consists of four steps catalysed by three enzymes: acyl-CoA oxidase, 3-hydroxyacyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase (multifunctional enzyme) and thiolase. In humans, thiolase activity is encoded by one gene, whereas in rodents, three enzymes encoded by three distinct genes (i.e. thiolase A, thiolase B and SCP2/thiolase) catalyse the thiolase activity. So far, acyl-CoA oxidase- and multifunctional enzyme-deficient patients have been identified and knock-out mice for these genes have been produced. Conversely, no isolated thiolase-deficient patient has been found, and no thiolase (A or B)-deficient mice have been generated. Hence, to better u…

DehydrogenaseBiologymedicine.disease_causeBiochemistryGene Expression Regulation EnzymologicPeroxisomal DisordersMiceStructure-Activity RelationshipPeroxisomesmedicineAnimalsHumansRNA MessengerGeneHydro-LyasesSCP2chemistry.chemical_classificationMutationOxidase testThiolaseStem Cells3-Hydroxyacyl CoA DehydrogenasesGeneral MedicinePeroxisomeAcetyl-CoA C-AcyltransferaseEmbryo MammalianLipid MetabolismMolecular biologyMice Mutant StrainsMice Inbred C57BLDisease Models AnimalPhenotypeEnzymechemistryBiochemistryAcyl-CoA OxidaseBiochimie
researchProduct

The human peroxisome in health and disease: The story of an oddity becoming a vital organelle

2013

Abstract Since the first report by Rhodin in 1954, our knowledge on mammalian microbodies/peroxisomes has known several periods. An initial two decades period (1954–1973) has contributed to the biochemical individualisation of peroxisomes as a new class of subcellular organelles (de Duve, 1965). The corresponding research period failed to define a clear role of mammalian peroxisomes in vital functions and intermediary metabolism, explaining why feeling that peroxisomes might be in the human cell oddities has prevailed during several decades. The period standing from 1973 to nowadays has progressively removed this cell oddity view of peroxisomes by highlighting vital function and metabolic r…

Peroxisome Proliferator-Activated ReceptorsDiseaseBiologyCell FractionationMicrobodiesBiochemistryPeroxisomal DisordersOrganellePeroxisomal disorderCentrifugation Density GradientPeroxisomesmedicineAnimalsHumansMicrobodyZellweger SyndromeOrganelle envelopeFatty AcidsGeneral MedicinePeroxisomeLipid Metabolismmedicine.diseaseCell biologyBiochemistryNuclear receptorMetabolic Networks and PathwaysFunction (biology)Biochimie
researchProduct